

Оптический модуль SFP

QSC-SFP20GE-1310-DDM

Описание

Трансиверы QSC-SFP20GE-1310-DDM представляют собой высокопроизводительные, экономичные оптические модули, поддерживающий дуплексную скорость передачи данных 1,25/1,0625 Гбит/с и дальность передачи 20 км, при использовании оптического волокна SMF.

Трансивер включает в себя три секции: FP-лазерный передатчик, PIN-фотодиод, объединенный с усилителем напряжения, управляемого током (TIA) и блок управления MCU.

Оптические модули QSC-SFP20GE-1310-DDM соответствуют спецификации SFP MSA SFF-8472 и нормам безопасности при работе с лазерами класса I.

Характеристики

- Двойная скорость передачи данных 1,25 Гбит/с и 1,063 Гбит/с
- 1310 нм FP-лазерный передатчик на расстояние 20 км, PIN-приемник
- Соответствие спецификации SFP MSA SFF-8472
- Дуплексный разъем LC (розетка)
- Поддержка функции цифровой диагностики (DDM)
- Совместимость с SONET ОС-24-LR-1
- Соответствие RoHS
- Напряжение питания +3,3 В
- Рабочая температура:
 - Стандартное исполнение: от 0 °C до +70 °C
 - Промышленное исполнение: от −40 °C до +85 °C

Применение

- Технологии Gigabit Ethernet/Fibre Channel
- Сервера/маршрутизаторы/коммутаторы
- Другие оптические системы передачи данных

Технические характеристики

Предельные максимальные значения

Параметр	Символ	Мин.	Макс.	Единица изменения
Напряжение питания	Vcc	-0.5	4,5	В
Температура хранения	Ts	-40	+85	°C

Параметр	Символ	Мин.	Макс.	Единица изменения
Рабочая влажность	-	5	85	%

Рекомендуемые условия эксплуатации

Параметр		Символ	Мин.	Типовое значение	Макс.	Единица изменения	
Рабочая температура	а	стандартный	Тс	0		+70	°C
корпуса	ч	промышленный		-40		+85	°C
Напряжение блока питания		Vcc	3,13	3,30	3,47	В	
Ток блока п	Ток блока питания		Icc			300	мА
		gabit Ethernet			1,25		Гбит/с
данных	Fibre Channel				1,063		

Оптические и электрические параметры

Параметр		Символ	Мин.	Типовое значение	Макс.	Единица изменения	Примеча- ние	
	Передатчик							
Центральная длина волны		λс	1260	1310	1360	НМ		
Ширина спект	Ширина спектра (RMS)				4	НМ		
Средняя мощность	выходная	Pout	-9		-3	дБм	1	
Коэффициен	т поглощения	ER	9			дБ		
Уровень сигна входе	Уровень сигнала данных на входе		400		1800	мВ	2	
Импеданс по	Импеданс по входу		90	100	110	Ω		
TX Disable	Отключено		2,0		Vcc	В		
	Включено		0		0,8	В		

Параметр		Символ	Мин.	Типовое значение	Макс.	Единица изменения	Примеча- ние
TX Fault	Ошибка		2,0		Vcc	В	
	Норма		0		0,8	В	
			Прие	мник			
Центральная	длина волны	λο	1260		1360	нм	
Чувствительн премника	Чувствительность премника				-23	дБм	3
Перегрузка приемника			-3			дБм	3
LOS De-Asse	LOS De-Assert				-24	дБм	
LOS Assert		LOSA	-35			дБм	
LOS Hysteres	is		1		4	дБ	
Уровень сигнала данных на выходе		Vout	400		1800	мВ	4
LOS		Наивысшее значение	2,0		Vcc	В	
		Нижнее значение			0.8	В	

ПРИМЕЧАНИЯ:

- 1. Оптическая мощность подается в одномодовое волокно (SMF).
- 2. Вход РЕСL, внутренне связанный по переменному току и терминированный.
- 3. Измеренный с тестовой последовательностью PRBS 2^7 -1 @1250 Мбит/с, BER ≤1×10⁻¹².
- 4. Внутренне связанный по переменному току.

Временные и электрические параметры

Параметр	Символ	Мин.	Типовое значение	Макс.	Единица изменения
Время сброса Tx Disable Negate	t_on			1	МС
Время установки Tx Disable Assert	t_off			10	мкс

Параметр	Символ	Мин.	Типовое значение	Макс.	Единица изменения
Время инициализации, включая сброс Tx Fault	t_init			300	МС
Время установки Tx Fault Assert	t_fault			100	мкс
Время перехода Tx Disable To Reset	t_reset	10			мкс
Время установки LOS Assert Time	t_loss_on			100	МКС
Время сброса LOS De-assert Time	t_loss_off			100	мкс
Тактовая частота Serial ID	f_serial_clock			400	кГц
MOD_DEF (0:2)-High	VH	2		Vcc	В
MOD_DEF (0:2)-Low	VL			0,8	В

Спецификация диагностики

Параметр	Диапазон	Единица изменения	Точность
Температура	от 0 до +70	°C	±3 °C
	от -40 до +85		
Напряжение	от 3,0 до 3,6	В	±3 %
Ток Bias	от 0 до 100	мА	±10 %
Мощность передачи TX	от -9 до -3	дБм	±3 дБ
Мощность приема Rx	от −23 до 0	дБм	±3 дБ

Назначение контактов

20	VeeT
19	TD-
18	TD+
17	VeeT
16	VccT
15	VccR
14	VeeR
13	RD+
12	RD-
11	VeeR

1	VeeT
2	TxFault
3	Tx Disable
4	MOD-DEF(2)
5	MOD-DEF(1)
6	MOD-DEF(0)
7	Rate Select
8	LOS
9	VeeR
10	VeeR

Контакт	Логика	Описание	Последова- тельность подключения	Приме- чание
1	VEET	Заземление передатчика	1	
2	TX FAULT	Индикация неисправности передатчика	3	1
3	TX DISABLE	Передатчик отключен	3	2
4	MOD_DEF(2)	SDA Последовательный сигнал передачи данных	3	3
5	MOD_DEF(1)	SCL Последовательный сигнал синхронизации	3	3
6	MOD_DEF(0)	TTL низкий	3	3
7	Rate Select	Не подсоединен	3	
8	LOS	Нет сигнала	3	4
9	VEER	Заземление приемника	1	
10	VEER	Заземление приемника	1	
11	VEER	Заземление приемника	1	

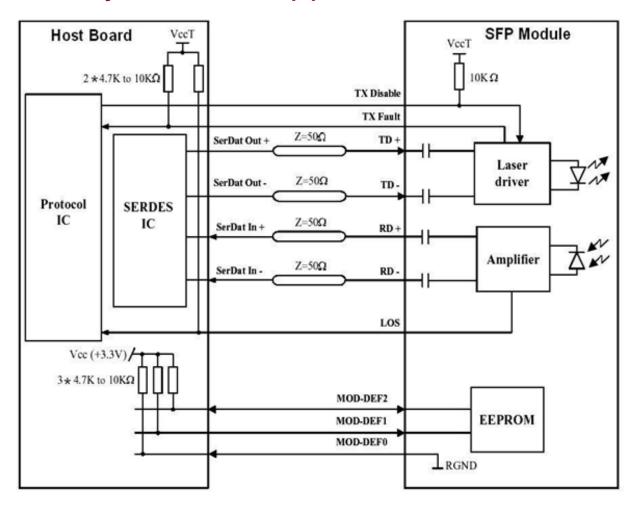
Контакт	Логика	Описание	Последова- тельность подключения	Приме-
12	RD-	Инв. вывод полученных данных	3	5
13	RD+	Вывод полученных данных	3	5
14	VEER	Заземление приемника	1	
15	VCCR	Питание приемника	2	
16	VCCT	Питание передатчика	2	
17	VEET	Заземление передатчика	1	
18	TD+	Вход для передачи данных	3	6
19	TD-	Инв. вход для передачи данных	3	6
20	VEET	Заземление передатчика	1	

ПРИМЕЧАНИЯ:

Последовательность использования выводов (PIN) при горячем подключении:

- 1. ТХ Fault представляет собой выход с открытым коллектором, который должен быть нагружен с помощью резистора 4.7К 10 кОм на основной плате до напряжения между 2,0 В и Vcc+0,3 В. Логический "нуль" означает обычную работу; логическая "единица" означает какую-либо неисправность лазера. В состоянии с низким уровнем выход будет нагружен не более, чем на 0,8 В.
- 2. TX Disable представляет собой вход, который используется для отключения оптического входа передатчика. Он нагружается в пределах модуля с помощью резистора 4.7К –10 кОм. Имеются следующие состояния:

Низкий уровень (от 0 до 0,8 В): Передатчик включен


(> 0,8 В, < 2,0 В): Не задано

Высокий уровень (от 2,000 до 3,465 В): Передатчик отключен Открытое состояние: Передатчик отключен

- 3. Моd-Def 0,1,2. Данные параметры означают выводы определения модуля. Они должны быть нагружены с помощью резистора 4.7К 10 кОм на основной плате. Нагрузочное напряжение должно составлять VccT или VccR. Mod-Def 0 заземлен модулем для индикации наличия модуля. Mod-Def 1 представляет собой линию синхросигнала двухпроводного последовательного интерфейса для серийного идентификационного номера. Mod-Def 2 представляет собой линию передачи данных двухпроводного последовательного интерфейса для серийного идентификационного номера.
- 4. LOS представляет собой выход с открытым коллектором, который должен быть нагружен резистором 4.7К 10 кОм. Нагрузочное напряжение между 2,0 В и Vcc+0,3 В. Логическая "единица" указывает на потерю сигнала, логический "нуль" означает обычную работу. В состоянии с низким уровнем выход будет нагружен не более, чем на 0,8 В.
- 5. RD-/+: Данные параметры представляют собой дифференциальные выходы приемника. Они представляют собой 100 дифференциальных линий, внутренне

- связанных по переменному току, которые должны быть терминированы при 100 Ом (дифференциал) на SERDES пользователя.
- 6. TD-/+: Данные параметры представляют собой дифференциальные входы передатчика. Они представляют собой внутренне связанные по переменному току дифференциальные линии с дифференциальным оконечным устройством 100 Ом внутри модуля.

Рекомендуемая схема интерфейса

Информация для заказа

Модель	Описание
QSC-SFP20GE-1310-DDM	Оптический модуль SFP, 20 км, 1,25 Гбит/с, Тх=1310 нм, LC, SM, DDM

Общая информация

Замечания и предложения

Мы всегда стремимся улучшить нашу документацию и помочь вам работать лучше, поэтому мы хотим услышать вас. Мы всегда рады обратной связи, в особенности:

- ошибки в содержании, непонятные или противоречащие места в тексте;
- идеи по улучшению документации, чтобы находить информацию быстрее;

• неработающие ссылки и замечания к навигации по документу.

Если вы хотите написать нам по поводу данного документа, то используйте, пожалуйста, форму обратной связи на сайте <u>qtech.ru</u>.

Гарантия и сервис

Процедура и необходимые действия по вопросам гарантии описаны на сайте QTECH в разделе «Поддержка» -> «Гарантийное обслуживание».

Ознакомиться с информацией по вопросам тестирования оборудования можно на сайте QTECH в разделе «Поддержка» -> «Взять оборудование на тест».

Вы можете написать напрямую в службу сервиса по электронной почте sc@qtech.ru.

Техническая поддержка

Если вам необходимо содействие в вопросах, касающихся нашего оборудования, то можете воспользоваться нашей автоматизированной системой запросов технического сервис-центра helpdesk.qtech.ru.

Телефон Технической поддержки +7 (495) 477-81-18 доб. 0

Электронная версия документа

Дата публикации: 18.05.2023

https://files.gtech.ru/upload/optical modules/sfp 1g/QSC-SFP20GE-1310-DDM datasheet.pdf

